91 research outputs found

    Calibration of conditional composite likelihood for Bayesian inference on Gibbs random fields

    Full text link
    Gibbs random fields play an important role in statistics, however, the resulting likelihood is typically unavailable due to an intractable normalizing constant. Composite likelihoods offer a principled means to construct useful approximations. This paper provides a mean to calibrate the posterior distribution resulting from using a composite likelihood and illustrate its performance in several examples.Comment: JMLR Workshop and Conference Proceedings, 18th International Conference on Artificial Intelligence and Statistics (AISTATS), San Diego, California, USA, 9-12 May 2015 (Vol. 38, pp. 921-929). arXiv admin note: substantial text overlap with arXiv:1207.575

    Bayesian inference for Gibbs random fields using composite likelihoods

    Full text link
    Gibbs random fields play an important role in statistics, for example the autologistic model is commonly used to model the spatial distribution of binary variables defined on a lattice. However they are complicated to work with due to an intractability of the likelihood function. It is therefore natural to consider tractable approximations to the likelihood function. Composite likelihoods offer a principled approach to constructing such approximation. The contribution of this paper is to examine the performance of a collection of composite likelihood approximations in the context of Bayesian inference.Comment: To appear in the proceedings of the 2012 Winter Simulation Conferenc

    Bayesian model selection for exponential random graph models via adjusted pseudolikelihoods

    Get PDF
    Models with intractable likelihood functions arise in areas including network analysis and spatial statistics, especially those involving Gibbs random fields. Posterior parameter es timation in these settings is termed a doubly-intractable problem because both the likelihood function and the posterior distribution are intractable. The comparison of Bayesian models is often based on the statistical evidence, the integral of the un-normalised posterior distribution over the model parameters which is rarely available in closed form. For doubly-intractable models, estimating the evidence adds another layer of difficulty. Consequently, the selection of the model that best describes an observed network among a collection of exponential random graph models for network analysis is a daunting task. Pseudolikelihoods offer a tractable approximation to the likelihood but should be treated with caution because they can lead to an unreasonable inference. This paper specifies a method to adjust pseudolikelihoods in order to obtain a reasonable, yet tractable, approximation to the likelihood. This allows implementation of widely used computational methods for evidence estimation and pursuit of Bayesian model selection of exponential random graph models for the analysis of social networks. Empirical comparisons to existing methods show that our procedure yields similar evidence estimates, but at a lower computational cost.Comment: Supplementary material attached. To view attachments, please download and extract the gzzipped source file listed under "Other formats
    corecore